
CNT 4603: Scripting – Windows PowerShell – Part 2 Page 1 Dr. Mark Llewellyn ©

CNT 4603: System Administration

Fall 2013

Scripting – Windows PowerShell – Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 4078-823-2790

http://www.cs.ucf.edu/courses/cnt4603/fall2013

http://www.cs.ucf.edu/courses/cnt4603/spr2012

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 2 Dr. Mark Llewellyn ©

Writing And Executing Scripts In PowerShell

• Create the following PowerShell script in a text editor like

Notepad or NotePad++.

• Save this script in the Administrator/MyScripts folder we

created in the last set of notes. Save the script with the name

ArrayScript.ps1. (In Notepad++, the PowerShell

extension .ps1 is a predefined extension.) Don’t worry

about understanding the syntax yet, we’ll get to that later.

• Once you’ve created the script, start PowerShell and at the

prompt enter the name of the script.

• You should see screen as it appears on the next page:

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 3 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 4 Dr. Mark Llewellyn ©

OK, so enter

the full

pathname

then!

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 5 Dr. Mark Llewellyn ©

Writing And Executing Scripts In PowerShell

• PowerShell does not load scripts from the default directory

automatically, so as the previous screen shot illustrates, you

need to specify the full pathname to the script.

• Do this and you should see the screen as it appears on the next

page.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 6 Dr. Mark Llewellyn ©

Now what the &*%$ is

going on? A shell that

won’t run scripts?

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 7 Dr. Mark Llewellyn ©

Writing And Executing Scripts In PowerShell

• The security settings built into PowerShell include something

called the “execution-policy”.

• The execution-policy determines how (or if) PowerShell runs

scripts.

• By default, PowerShell’s execution policy is set to

Restricted; that means that scripts – including those you

write yourself – won’t run!

• To verify the execution policy settings run the cmdlet get-

executionpolicy. This is shown on the next page.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 8 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 9 Dr. Mark Llewellyn ©

Writing And Executing Scripts In PowerShell

• While this security setting might seem a bit severe,

nevertheless that’s what it is. So, we need to reset the

execution policy.

• To do this, run the cmdlet set-executionpolicy.

• To configure PowerShell to run any script you write yourself –

without question – but to run scripts downloaded from the

Internet only if those scripts have been signed by a trusted

publisher, set the execution policy to RemoteSigned.

• AllSigned requires all scripts to be signed by a trusted

publisher and Unrestricted allows all scripts to be

executed .

• Use the cmdlet to set the policy to RemoteSigned.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 10 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 11 Dr. Mark Llewellyn ©

Writing And Executing Scripts In PowerShell

• Now that you’ve gotten the execution policy set, you can

finally execute the ArrayScript script as we tried to do earlier.

• The next page illustrates the execution, finally!, of our script.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 12 Dr. Mark Llewellyn ©

Now what the &*%$ is

going on! It still didn’t

work!

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 13 Dr. Mark Llewellyn ©

Writing And Executing Scripts In PowerShell

• As you can see from the previous slide, PowerShell does not

run scripts without a fully specified pathname!

• If you want to be able to execute scripts without providing the

full pathname to the script, you’ll need to modify your path.

• The following command will retrieve your Windows PATH

environment variable and display it in a readable fashion.

$a = $env:path; $a.split(“;”);

• Note that you can also use the .\ notation to execute a script

from within the current directory if you don’t want to mess

around with your path environment variable.

• See the next two pages for illustrations of this.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 14 Dr. Mark Llewellyn ©

See the Windows path

environment variable

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 15 Dr. Mark Llewellyn ©

Using the .\ notation to

execute a script from

the current directory.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 16 Dr. Mark Llewellyn ©

Writing And Executing Scripts In PowerShell

• As your first real system administrator project with

PowerShell. We’ll modify your path environment variable.

• Let’s add the MyScripts folder that we created earlier to the

path environment.

• The command for this is:

$env:path = $env:path + “;c:\users\administrator\MyScripts”

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 17 Dr. Mark Llewellyn ©

The MyScripts folder has now been

appended to the path variable.

Now you can run the ArrayScript script

without needing to specify the full path.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 18 Dr. Mark Llewellyn ©

Pipelining In PowerShell

• When you start writing more elaborate scripts in PowerShell

(as well as many other scripting languages), you’ll eventually

realize the benefits of pipelining.

• Its certainly true that not all scripts will need to use a pipeline,

however, many will and knowing how to setup and work a

pipeline will allow you to create very efficient scripts.

• Unlike like an oil or water pipeline, that is designed to move a

liquid from one place to another; a PowerShell pipeline would

more closely resemble an assembly line. We’re not moving

something from one point to another, but rather start with one

thing and transform it into something else as it moves along

the pipeline. Look at the example on the next page.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 19 Dr. Mark Llewellyn ©

The directory listing is piped to the

format-list which formats the output

of the directory command into a list.

Notice how different the non-piped

and the piped outputs look.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 20 Dr. Mark Llewellyn ©

Pipelining In PowerShell

• Now let’s look at a couple of somewhat more practical/useful

examples.

• The first uses the cmdlet get-childitem to retrieve a list

of all the items in the myScripts folder. We’ll pipe this

output to the where-object cmdlet that will filter out any

item greater than 200KB in size, and then pipe this result set to

the sort-object cmdlet. This is shown on page 22.

• The second example gets the services on the server, pipes this

set to the sort-object cmdlet to perform a sort based on

the service’s status and finally pipes this result to the

format-table cmdlet to display the results in a table based

format. This example is shown on page 23.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 21 Dr. Mark Llewellyn ©

The full command shown above is:

get-childitem c:\users\administrator\myscripts | where-object {$_.length –lt 200*1024} | sort-object length

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 22 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 23 Dr. Mark Llewellyn ©

Pipelining In PowerShell

• As you can see, its fairly easy to take advantage of pipelining

in PowerShell.

• However, you do need to use caution. Not everything can be

pipelined. You can’t pipeline something unless it makes sense

to use a pipeline.

• In the previous example, it makes sense to pipeline the service

information to the sort-object cmdlet, since sort-

object can pretty much sort anything. It also makes sense to

pipe the sorted information to format-table because it can

format just about any information and display it as a table.

• What would this command do?

sort-object | get-process

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 24 Dr. Mark Llewellyn ©

Pipelining In PowerShell

• Answer: Absolutely nothing! Since sort-object is

designed to sort things and here it has nothing to sort, so it will

pass an empty result set to the get-process cmdlet which

will do nothing.

See… I told you so!

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 25 Dr. Mark Llewellyn ©

Pipelining In PowerShell

• For the most part, and there are some exceptions to the rule,

for pipelines to work correctly, you first acquire something (a

collection, an object, whatever) and then hand that data over

the pipeline.

– One exception to the rule would be the following situation where $a

represents a variable that contains a collection of data. You could sort

the data in $a and sidestep the pipeline altogether with a command like:
sort-object –inputobject $a

• When you do hand data over the pipeline, make sure that there

is a cmdlet waiting for it on the other side.

• The example on the next page illustrates a common pipelining

mistake.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 26 Dr. Mark Llewellyn ©

Pipelining In PowerShell

• Suppose you entered a command like this:

$a = get-process | $a

• While it might look ok; you’re thinking that will assign the

output of the get-process cmdlet to the variable $a and

then display $a. Instead you’re going to get an error.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 27 Dr. Mark Llewellyn ©

Pipelining In PowerShell

• Pipelines are used to string multiple commands into a single

command, with data being passed from one portion of the

pipeline to the next.

• Furthermore, as that data gets passed from one section of the

pipe to another it gets transformed in some way: filtered,

sorted, grouped, formatted, whatever.

• In the invalid command on the previous page, we didn’t pass

any data. We’ve really got two separate commands here: we

want to use the get-process cmdlet to return information

about the processes running on the server and them without

transforming that data in any way, we want to display the

information. Since they are two separate commands, they

should be on two separate lines as shown on the next page.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 28 Dr. Mark Llewellyn ©

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 29 Dr. Mark Llewellyn ©

If you really want to do it this

way, then separate the two

distinct commands on the

same line with semi-colons.

Note however, that this is not

pipelining.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 30 Dr. Mark Llewellyn ©

Pipelining In PowerShell

• Often, as some of the previous examples have illustrated, the

system administrator may wish to execute some command and

save the results in a variable.

• The results of a pipeline can be stored in a variable in the same

manner in which the results of a single command can be stored

in a variable. The previous example illustrated saving the

output of the get-process cmdlet into a variable $a. (All

variables in PowerShell begin with a $.)

• The example on the next page illustrates saving the results of a

pipeline.

CNT 4603: Scripting – Windows PowerShell – Part 2 Page 31 Dr. Mark Llewellyn ©

